Dialogue on Appeals to Consequences

[note: the following is essentially an expanded version of this LessWrong comment on whether appeals to consequences are normative in discourse. I am exasperated that this is even up for debate, but I figure that making the argumentation here explicit is helpful]

Carter and Quinn are discussing charitable matters in the town square, with a few onlookers.

Carter: “So, this local charity, People Against Drowning Puppies (PADP), is nominally opposed to drowning puppies.”

Quinn: “Of course.”

Carter: “And they said they’d saved 2170 puppies last year, whereas their total spending was $1.2 million, so they estimate they save one puppy per $553.”

Quinn: “Sounds about right.”

Carter: “So, I actually checked with some of their former employees, and if what they say and my corresponding calculations are right, they actually only saved 138 puppies.”

Quinn: “Hold it right there. Regardless of whether that’s true, it’s bad to say that.”

Carter: “That’s an appeal to consequences, well-known to be a logical fallacy.”

Quinn: “Is that really a fallacy, though? If saying something has bad consequences, isn’t it normative not to say it?”

Carter: “Well, for my own personal decisionmaking, I’m broadly a consequentialist, so, yes.”

Quinn: “Well, it follows that appeals to consequences are valid.”

Carter: “It isn’t logically valid. If saying something has bad consequences, that doesn’t make it false.”

Quinn: “But it is decision-theoretically compelling, right?”

Carter: “In theory, if it could be proven, yes. But, you haven’t offered any proof, just a statement that it’s bad.”

Quinn: “Okay, let’s discuss that. My argument is: PADP is a good charity. Therefore, they should be getting more donations. Saying that they didn’t save as many puppies as they claimed they did, in public (as you just did), is going to result in them getting fewer donations. Therefore, your saying that they didn’t save as many puppies as they claimed to is bad, and is causing more puppies to drown.”

Carter: “While I could spend more effort to refute that argument, I’ll initially note that you only took into account a single effect (people donating less to PADP) and neglected other effects (such as people having more accurate beliefs about how charities work).”

Quinn: “Still, you have to admit that my case is plausible, and that some onlookers are convinced.”

Carter: “Yes, it’s plausible, in that I don’t have a full refutation, and my models have a lot of uncertainty. This gets into some complicated decision theory and sociological modeling. I’m afraid we’ve gotten sidetracked from the relatively clear conversation, about how many puppies PADP saved, to a relatively unclear one, about the decision theory of making actual charity effectiveness clear to the public.”

Quinn: “Well, sure, we’re into the weeds now, but this is important! If it’s actually bad to say what you said, it’s important that this is widely recognized, so that we can have fewer… mistakes like that.”

Carter: “That’s correct, but I feel like I might be getting trolled. Anyway, I think you’re shooting the messenger: when I started criticizing PADP, you turned around and made the criticism about me saying that, directing attention against PADP’s possible fraudulent activity.”

Quinn: “You still haven’t refuted my argument. If you don’t do so, I win by default.”

Carter: “I’d really rather that we just outlaw appeals to consequences, but, fine, as long as we’re here, I’m going to do this, and it’ll be a learning experience for everyone involved. First, you said that PADP is a good charity. Why do you think this?”

Quinn: “Well, I know the people there and they seem nice and hardworking.”

Carter: “But, they said they saved over 2000 puppies last year, when they actually only saved 138, indicating some important dishonesty and ineffectiveness going on.”

Quinn: “Allegedly, according to your calculations. Anyway, saying that is bad, as I’ve already argued.”

Carter: “Hold up! We’re in the middle of evaluating your argument that saying that is bad! You can’t use the conclusion of this argument in the course of proving it! That’s circular reasoning!”

Quinn: “Fine. Let’s try something else. You said they’re being dishonest. But, I know them, and they wouldn’t tell a lie, consciously, although it’s possible that they might have some motivated reasoning, which is totally different. It’s really uncivil to call them dishonest like that. If everyone did that with the willingness you had to do so, that would lead to an all-out rhetorical war…”

Carter: “God damn it. You’re making another appeal to consequences.”

Quinn: “Yes, because I think appeals to consequences are normative.”

Carter: “Look, at the start of this conversation, your argument was that saying PADP only saved 138 puppies is bad.”

Quinn: “Yes.”

Carter: “And now you’re in the course of arguing that it’s bad.”

Quinn: “Yes.”

Carter: “Whether it’s bad is a matter of fact.”

Quinn: “Yes.”

Carter: “So we have to be trying to get the right answer, when we’re determining whether it’s bad.”

Quinn: “Yes.”

Carter: “And, while appeals to consequences may be decision theoretically compelling, they don’t directly bear on the facts.”

Quinn: “Yes.”

Carter: “So we shouldn’t have appeals to consequences in conversations about whether the consequences of saying something is bad.”

Quinn: “Why not?”

Carter: “Because we’re trying to get to the truth.”

Quinn: “But aren’t we also trying to avoid all-out rhetorical wars, and puppies drowning?”

Carter: “If we want to do those things, we have to do them by getting to the truth.”

Quinn: “The truth, according to your opinion-

Carter: “God damn it, you just keep trolling me, so we never get to discuss the actual facts. God damn it. Fuck you.”

Quinn: “Now you’re just spouting insults. That’s really irresponsible, given that I just accused you of doing something bad, and causing more puppies to drown.”

Carter: “You just keep controlling the conversation by OODA looping faster than me, though. I can’t refute your argument, because you appeal to consequences again in the middle of the refutation. And then we go another step down the ladder, and never get to the truth.”

Quinn: “So what do you expect me to do? Let you insult well-reputed animal welfare workers by calling them dishonest?”

Carter: “Yes! I’m modeling the PADP situation using decision-theoretic models, which require me to represent the knowledge states and optimization pressures exerted by different agents (both conscious and unconscious), including when these optimization pressures are towards deception, and even when this deception is unconscious!”

Quinn: “Sounds like a bunch of nerd talk. Can you speak more plainly?”

Carter: “I’m modeling the actual facts of how PADP operates and how effective they are, not just how well-liked the people are.”

Quinn: “Wow, that’s a strawman.”

Carter: “Look, how do you think arguments are supposed to work, exactly? Whoever is best at claiming that their opponent’s argumentation is evil wins?”

Quinn: “Sure, isn’t that the same thing as who’s making better arguments?”

Carter: “If we argue by proving our statements are true, we reach the truth, and thereby reach the good. If we argue by proving each other are being evil, we don’t reach the truth, nor the good.”

Quinn: “In this case, though, we’re talking about drowning puppies. Surely, the good in this case is causing fewer puppies to drown, and directing more resources to the people saving them.”

Carter: “That’s under contention, though! If PADP is lying about how many puppies they’re saving, they’re making the epistemology of the puppy-saving field worse, leading to fewer puppies being saved. And, they’re taking money away from the next-best-looking charity, which is probably more effective if, unlike PADP, they’re not lying.”

Quinn: “How do you know that, though? How do you know the money wouldn’t go to things other than saving drowning puppies if it weren’t for PADP?”

Carter: “I don’t know that. My guess is that the money might go to other animal welfare charities that claim high cost-effectiveness.”

Quinn: “PADP is quite effective, though. Even if your calculations are right, they save about one puppy per $10,000. That’s pretty good.”

Carter: “That’s not even that impressive, but even if their direct work is relatively effective, they’re destroying the epistemology of the puppy-saving field by lying. So effectiveness basically caps out there instead of getting better due to better epistemology.”

Quinn: “What an exaggeration. There are lots of other charities that have misleading marketing (which is totally not the same thing as lying). PADP isn’t singlehandedly destroying anything, except instances of puppies drowning.”

Carter: “I’m beginning to think that the difference between us is that I’m anti-lying, whereas you’re pro-lying.”

Quinn: “Look, I’m only in favor of lying when it has good consequences. That makes me different from pro-lying scoundrels.”

Carter: “But you have really sloppy reasoning about whether lying, in fact, has good consequences. Your arguments for doing so, when you lie, are made of Swiss cheese.”

Quinn: “Well, I can’t deductively prove anything about the real world, so I’m using the most relevant considerations I can.”

Carter: “But you’re using reasoning processes that systematically protect certain cached facts from updates, and use these cached facts to justify not updating. This was very clear when you used outright circular reasoning, to use the cached fact that denigrating PADP is bad, to justify terminating my argument that it wasn’t bad to denigrate them. Also, you said the PADP people were nice and hardworking as a reason I shouldn’t accuse them of dishonesty… but, the fact that PADP saved far fewer puppies than they claimed actually casts doubt on those facts, and the relevance of them to PADP’s effectiveness. You didn’t update when I first told you that fact, you instead started committing rhetorical violence against me.”

Quinn: “Hmm. Let me see if I’m getting this right. So, you think I have false cached facts in my mind, such as PADP being a good charity.”

Carter: “Correct.”

Quinn: “And you think those cached facts tend to protect themselves from being updated.”

Carter: “Correct.”

Quinn: “And you think they protect themselves from updates by generating bad consequences of making the update, such as fewer people donating to PADP.”

Carter: “Correct.”

Quinn: “So you want to outlaw appeals to consequences, so facts have to get acknowledged, and these self-reinforcing loops go away.”

Carter: “Correct.”

Quinn: “That makes sense from your perspective. But, why should I think my beliefs are wrong, and that I have lots of bad self-protecting cached facts?”

Carter: “If everyone were as willing as you to lie, the history books would be full of convenient stories, the newspapers would be parts of the matrix, the schools would be teaching propaganda, and so on. You’d have no reason to trust your own arguments that speaking the truth is bad.”

Quinn: “Well, I guess that makes sense. Even though I lie in the name of good values, not everyone agrees on values or beliefs, so they’ll lie to promote their own values according to their own beliefs.”

Carter: “Exactly. So you should expect that, as a reflection to your lying to the world, the world lies back to you. So your head is full of lies, like the ‘PADP is effective and run by good people’ one.”

Quinn: “Even if that’s true, what could I possibly do about it?”

Carter: “You could start by not making appeals to consequences. When someone is arguing that a belief of yours is wrong, listen to the argument at the object level, instead of jumping to the question of whether saying the relevant arguments out loud is a good idea, which is a much harder question.”

Quinn: “But how do I prevent actually bad consequences from happening?”

Carter: “If your head is full of lies, you can’t really trust ad-hoc object-level arguments against speech, like ‘saying PADP didn’t save very many puppies is bad because PADP is a good charity’. You can instead think about what discourse norms lead to the truth being revealed, and which lead to it being obscured. We’ve seen, during this conversation, that appeals to consequences tend to obscure the truth. And so, if we share the goal of reaching the truth together, we can agree not to do those.”

Quinn: “That still doesn’t answer my question. What about things that are actually bad, like privacy violations?”

Carter: “It does seem plausible that there should be some discourse norms that protect privacy, so that some facts aren’t revealed, if such norms have good consequences overall. Perhaps some topics, such as individual people’s sex lives, are considered to be banned topics (in at least some spaces), unless the person consents.”

Quinn: “Isn’t that an appeal to consequences, though?”

Carter: “Not really. Deciding what privacy norms are best requires thinking about consequences. But, once those norms have been decided on, it is no longer necessary to prove that privacy violations are bad during discussions. There’s a simple norm to appeal to, which says some things are out of bounds for discussion. And, these exceptions can be made without allowing appeals to consequences in full generality.”

Quinn: “Okay, so we still have something like appeals to consequences at the level of norms, but not at the level of individual arguments.”

Carter: “Exactly.”

Quinn: “Does this mean I have to say a relevant true fact, even if I think it’s bad to say it?”

Carter: “No. Those situations happen frequently, and while some radical honesty practitioners try not to suppress any impulse to say something true, this practice is probably a bad idea for a lot of people. So, of course you can evaluate consequences in your head before deciding to say something.”

Quinn: “So, in summary: if we’re going to have suppression of some facts being said out loud, we should have that through either clear norms designed with consequences (including consequences for epistemology) in mind, or individuals deciding not to say things, but otherwise our norms should be protecting true speech, and outlawing appeals to consequences.”

Carter: “Yes, that’s exactly right! I’m glad we came to agreement on this.”

Why artificial optimism?

Optimism bias is well-known. Here are some examples.

  • It’s conventional to answer the question “How are you doing?” with “well”, regardless of how you’re actually doing. Why?
  • People often believe that it’s inherently good to be happy, rather than thinking that their happiness level should track the actual state of affairs (and thus be a useful tool for emotional processing and communication). Why?
  • People often think their project has an unrealistically high chance of succeeding. Why?
  • People often avoid looking at horrible things clearly. Why?
  • People often want to suppress criticism but less often want to suppress praise; in general, they hold criticism to a higher standard than praise. Why?

The parable of the gullible king

Imagine a kingdom ruled by a gullible king. The king gets reports from different regions of the kingdom (managed by different vassals). These reports detail how things are going in these different regions, including particular events, and an overall summary of how well things are going. He is quite gullible, so he usually believes these reports, although not if they’re too outlandish.

When he thinks things are going well in some region of the kingdom, he gives the vassal more resources, expands the region controlled by the vassal, encourages others to copy the practices of that region, and so on. When he thinks things are going poorly in some region of the kingdom (in a long-term way, not as a temporary crisis), he gives the vassal fewer resources, contracts the region controlled by the vassal, encourages others not to copy the practices of that region, possibly replaces the vassal, and so on. This behavior makes sense if he’s assuming he’s getting reliable information: it’s better for practices that result in better outcomes to get copied, and for places with higher economic growth rates to get more resources.

Initially, this works well, and good practices are adopted throughout the kingdom. But, some vassals get the idea of exaggerating how well things are going in their own region, while denigrating other regions. This results in their own region getting more territory and resources, and their practices being adopted elsewhere.

Soon, these distortions become ubiquitous, as the king (unwittingly) encourages everyone to adopt them, due to the apparent success of the regions distorting information this way. At this point, the vassals face a problem: while they want to exaggerate their own region and denigrate others, they don’t want others to denigrate their own region. So, they start forming alliances with each other. Vassals that ally with each other promise to say only good things about each other’s regions. That way, both vassals mutually benefit, as they both get more resources, expansion, etc compared to if they had been denigrating each other’s regions. These alliances also make sure to keep denigrating those not in the same coalition.

While these “praise coalitions” are locally positive-sum, they’re globally zero-sum: any gains that come from them (such as resources and territory) are taken from other regions. (However, having more praise overall helps the vassals currently in power, as it means they’re less likely to get replaced with other vassals).

Since praise coalitions lie, they also suppress the truth in general in a coordinated fashion. It’s considered impolite to reveal certain forms of information that could imply that things aren’t actually going as well as they’re saying it’s going. Prying too closely into a region’s actual state of affairs (and, especially, sharing this information) is considered a violation of privacy.

Meanwhile, the actual state of affairs has gotten worse in almost all regions, though the regions prop up their lies with Potemkin villages, so the gullible king isn’t shocked when he visits the region.

At some point, a single praise coalition wins. Vassals notice that it’s in their interest to join this coalition, since (as mentioned before) it’s in the interests of the vassals as a class to have more praise overall, since that means they’re less likely to get replaced. (Of course, it’s also in their class interests to have things actually be going well in their regions, so the praise doesn’t get too out of hand, and criticism is sometimes accepted) At this point, it’s conventional for vassals to always praise each other and punish vassals who denigrate other regions.

Optimism isn’t ubiquitous, however. There are a few strategies vassals can use to use pessimism to claim more resources. Among these are:

  • Blame: By claiming a vassal is doing something wrong, another vassal may be able to take power away from that vassal, sometimes getting a share of that power for themselves. (Blame is often not especially difficult, given that everyone’s inflating their impressions)
  • Pity: By showing that their region is undergoing a temporary but fixable crisis (perhaps with the help of other vassals), vassals can claim that they should be getting more resources. But, the problem has to be solvable; it has to be a temporary crises, not a permanent state of decay. (One form of pity is claiming to be victimized by another vassal; this mixes blame and pity)
  • Doomsaying: By claiming that there is some threat to the kingdom (such as wolves), vassals can claim that they should be getting resources in order to fight this threat. Again, the threat has to be solvable; the king has little reason to give someone more resources if there is, indeed, nothing to do about the threat.

Pity and doomsaying could be seen as two sides of the same coin: pity claims things are going poorly (but fixably) locally, while doomsaying claims things are going poorly (but fixably) globally. However, all of these strategies are limited to a significant degree by the overall praise coalition, so they don’t get out of hand.

Back to the real world

Let’s relate the parable of the gullible king back to the real world.

  • The king is sometimes an actual person (such as a CEO, as in Moral Mazes, or a philanthropist), but is more often a process distributed among many people that is evaluating which things are good/bad, in a pattern-matching way.
  • Everyone’s a vassal to some degree. People who have more power-through-appearing-good are vassals with more territory, who have more of an interest in maintaining positive impressions.
  • Most (almost all?) coalitions in the real world have aspects of praise coalitions. They’ll praise those in the coalition while denigrating those outside it.
  • Politeness and privacy are, in fact, largely about maintaining impressions (especially positive impressions) through coordinating against the revelation of truth.
  • Maintaining us-vs-them boundaries is characteristic of the political right, while dissolving them (and punishing those trying to set them up) is characteristic of the political left. So, non-totalizing praise coalitions are more characteristic of the right, and total ones that try to assimilate others (such as the one that won in the parable) are more characteristic of the left. (Note, totalizing praise coalitions still denigrate/attack ones that can’t be safely assimilated; see the paradox of tolerance)
  • Coalitions may be fractal, of course.
  • A lot of the distortionary dynamics are subconscious (see: The Elephant in the Brain).

This model raises an important question (with implications for the real world): if you’re a detective in the kingdom of the gullible king who is at least somewhat aware of the reality of the situation and the distortonary dynamics, and you want to fix the situation (or at least reduce harm), what are your options?

The AI Timelines Scam

[epistemic status: that’s just my opinion, man. I have highly suggestive evidence, not deductive proof, for a belief I sincerely hold]

“If you see fraud and do not say fraud, you are a fraud.”Nasim Taleb

I was talking with a colleague the other day about an AI organization that claims:

  1. AGI is probably coming in the next 20 years.
  2. Many of the reasons we have for believing this are secret.
  3. They’re secret because if we told people about those reasons, they’d learn things that would let them make an AGI even sooner than they would otherwise.

His response was (paraphrasing): “Wow, that’s a really good lie! A lie that can’t be disproven.”

I found this response refreshing, because he immediately jumped to the most likely conclusion.

Near predictions generate more funding

Generally, entrepreneurs who are optimistic about their project get more funding than ones who aren’t. AI is no exception. For a recent example, see the Human Brain Project. The founder, Henry Makram, predicted in 2009 that the project would succeed in simulating a human brain by 2019, and the project was already widely considered a failure by 2013. (See his TED talk, at 14:22)

The Human Brain project got 1.3 billion Euros of funding from the EU.

It’s not hard to see why this is. To justify receiving large amounts of money, the leader must make a claim that the project is actually worth that much. And, AI projects are more impactful if it is, in fact, possible to develop AI soon. So, there is an economic pressure towards inflating estimates of the chance AI will be developed soon.

Fear of an AI gap

The missile gap was a lie by the US Air Force to justify building more nukes, by falsely claiming that the Soviet Union had more nukes than the US.

Similarly, there’s historical precedent for an AI gap lie used to justify more AI development. Fifth Generation Computer Systems was an ambitious 1982 project by the Japanese government (funded for $400 million in 1992, or $730 million in 2019 dollars) to create artificial intelligence through massively parallel logic programming.

The project is widely considered to have failed.  From a 1992 New York Times article:

A bold 10-year effort by Japan to seize the lead in computer technology is fizzling to a close, having failed to meet many of its ambitious goals or to produce technology that Japan’s computer industry wanted.

That attitude is a sharp contrast to the project’s inception, when it spread fear in the United States that the Japanese were going to leapfrog the American computer industry. In response, a group of American companies formed the Microelectronics and Computer Technology Corporation, a consortium in Austin, Tex., to cooperate on research. And the Defense Department, in part to meet the Japanese challenge, began a huge long-term program to develop intelligent systems, including tanks that could navigate on their own.

The Fifth Generation effort did not yield the breakthroughs to make machines truly intelligent, something that probably could never have realistically been expected anyway. Yet the project did succeed in developing prototype computers that can perform some reasoning functions at high speeds, in part by employing up to 1,000 processors in parallel. The project also developed basic software to control and program such computers. Experts here said that some of these achievements were technically impressive.

In his opening speech at the conference here, Kazuhiro Fuchi, the director of the Fifth Generation project, made an impassioned defense of his program.

“Ten years ago we faced criticism of being too reckless,” in setting too many ambitious goals, he said, adding, “Now we see criticism from inside and outside the country because we have failed to achieve such grand goals.”

Outsiders, he said, initially exaggerated the aims of the project, with the result that the program now seems to have fallen short of its goals.

Some American computer scientists say privately that some of their colleagues did perhaps overstate the scope and threat of the Fifth Generation project. Why? In order to coax more support from the United States Government for computer science research.

(emphasis mine)

This bears similarity to some conversations on AI risk I’ve been party to in the past few years. The fear is that Others (DeepMind, China, whoever) will develop AGI soon, so We have to develop AGI first in order to make sure it’s safe, because Others won’t make sure it’s safe and We will. Also, We have to discuss AGI strategy in private (and avoid public discussion), so Others don’t get the wrong ideas. (Generally, these claims have little empirical/rational backing to them; they’re based on scary stories, not historically validated threat models)

The claim that others will develop weapons and kill us with them by default implies a moral claim to resources, and a moral claim to be justified in making weapons in response. Such claims, if exaggerated, justify claiming more resources and making more weapons. And they weaken a community’s actual ability to track and respond to real threats (as in The Boy Who Cried Wolf).

How does the AI field treat its critics?

Hubert Dreyfus, probably the most famous historical AI critic, published “Alchemy and Artificial Intelligence” in 1965, which argued that the techniques popular at the time were insufficient for AGI. Subsequently, he was shunned by other AI researchers:

The paper “caused an uproar”, according to Pamela McCorduck.  The AI community’s response was derisive and personal.  Seymour Papert dismissed one third of the paper as “gossip” and claimed that every quotation was deliberately taken out of context.  Herbert A. Simon accused Dreyfus of playing “politics” so that he could attach the prestigious RAND name to his ideas. Simon said, “what I resent about this was the RAND name attached to that garbage.”

Dreyfus, who taught at MIT, remembers that his colleagues working in AI “dared not be seen having lunch with me.”  Joseph Weizenbaum, the author of ELIZA, felt his colleagues’ treatment of Dreyfus was unprofessional and childish.  Although he was an outspoken critic of Dreyfus’ positions, he recalls “I became the only member of the AI community to be seen eating lunch with Dreyfus. And I deliberately made it plain that theirs was not the way to treat a human being.”

This makes sense as anti-whistleblower activity: ostracizing, discrediting, or punishing people who break the conspiracy to the public. Does this still happen in the AI field today?

Gary Marcus is a more recent AI researcher and critic. In 2012, he wrote:

Deep learning is important work, with immediate practical applications.

Realistically, deep learning is only part of the larger challenge of building intelligent machines. Such techniques lack ways of representing causal relationships (such as between diseases and their symptoms), and are likely to face challenges in acquiring abstract ideas like “sibling” or “identical to.” They have no obvious ways of performing logical inferences, and they are also still a long way from integrating abstract knowledge, such as information about what objects are, what they are for, and how they are typically used. The most powerful A.I. systems … use techniques like deep learning as just one element in a very complicated ensemble of techniques, ranging from the statistical technique of Bayesian inference to deductive reasoning.

In 2018, he tweeted an article in which Yoshua Bengio (a deep learning pioneer) seemed to agree with these previous opinions. This tweet received a number of mostly-critical replies. Here’s one, by AI professor Zachary Lipton:

There’s a couple problems with this whole line of attack. 1) Saying it louder ≠ saying it first. You can’t claim credit for differentiating between reasoning and pattern recognition. 2) Saying X doesn’t solve Y is pretty easy. But where are your concrete solutions for Y?

The first criticism is essentially a claim that everybody knows that deep learning can’t do reasoning. But, this is essentially admitting that Marcus is correct, while still criticizing him for saying it [ED NOTE: the phrasing of this sentence is off (Lipton publicly agrees with Marcus on this point), and there is more context, see Lipton’s reply].

The second is a claim that Marcus shouldn’t criticize if he doesn’t have a solution in hand. This policy deterministically results in the short AI timelines narrative being maintained: to criticize the current narrative, you must present your own solution, which constitutes another narrative for why AI might come soon.

Deep learning pioneer Yann LeCun’s response is similar:

Yoshua (and I, and others) have been saying this for a long time.
The difference with you is that we are actually trying to do something about it, not criticize people who don’t.

Again, the criticism is not that Marcus is wrong in saying deep learning can’t do certain forms of reasoning, the criticism is that he isn’t presenting an alternative solution. (Of course, the claim could be correct even if Marcus doesn’t have an alternative!)

Apparently, it’s considered bad practice in AI to criticize a proposal for making AGI without presenting on alternative solution. Clearly, such a policy causes large distortions!

Here’s another response, by Steven Hansen (a research scientist at DeepMind):

Ideally, you’d be saying this through NeurIPS submissions rather than New Yorker articles. A lot of the push-back you’re getting right now is due to the perception that you haven’t been using the appropriate channels to influence the field.

That is: to criticize the field, you should go through the field, not through the press. This is standard guild behavior. In the words of Adam Smith: “People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices.”

(Also see Marcus’s medium article on the Twitter thread, and on the limitations of deep learning)

[ED NOTE: I’m not saying these critics on Twitter are publicly promoting short AI timelines narratives (in fact, some are promoting the opposite), I’m saying that the norms by which they criticize Marcus result in short AI timelines narratives being maintained.]

Why model sociopolitical dynamics?

This post has focused on sociopolotical phenomena involved in the short AI timelines phenomenon. For this, I anticipate criticism along the lines of “why not just model the technical arguments, rather than the credibility of the people involved?” To which I pre-emptively reply:

  • No one can model the technical arguments in isolation. Basic facts, such as the accuracy of technical papers on AI, or the filtering processes determining what you read and what you don’t, depend on sociopolitical phenomena. This is far more true for people who don’t themselves have AI expertise.
  • “When AGI will be developed” isn’t just a technical question. It depends on what people actually choose to do (and what groups of people actually succeed in accomplishing), not just what can be done in theory. And so basic questions like “how good is the epistemology of the AI field about AI timelines?” matter directly.
  • The sociopolitical phenomena are actively making technical discussion harder. I’ve had a well-reputed person in the AI risk space discourage me from writing publicly about the technical arguments, on the basis that getting people to think through them might accelerate AI timelines (yes, really).

Which is not to say that modeling such technical arguments is not important for forecasting AGI. I certainly could have written a post evaluating such arguments, and I decided to write this post instead, in part because I don’t have much to say on this issue that Gary Marcus hasn’t already said. (Of course, I’d have written a substantially different post, or none at all, if I believed the technical arguments that AGI is likely to come soon had merit to them)

What I’m not saying

I’m not saying:

  1. That deep learning isn’t a major AI advance.
  2. That deep learning won’t substantially change the world in the next 20 years (through narrow AI).
  3. That I’m certain that AGI isn’t coming in the next 20 years.
  4. That AGI isn’t existentially important on long timescales.
  5. That it isn’t possible that some AI researchers have asymmetric information indicating that AGI is coming in the next 20 years. (Unlikely, but possible)
  6. That people who have technical expertise shouldn’t be evaluating technical arguments on their merits.
  7. That most of what’s going on is people consciously lying. (Rather, covert deception hidden from conscious attention (e.g. motivated reasoning) is pervasive; see The Elephant in the Brain)
  8. That many people aren’t sincerely confused on the issue.

I’m saying that there are systematic sociopolitical phenomena that cause distortions in AI estimates, especially towards shorter timelines. I’m saying that people are being duped into believing a lie. And at the point where 73% of tech executives say they believe AGI will be developed in the next 10 years, it’s a major one.

This has happened before. And, in all likelihood, this will happen again.

Self-consciousness wants to make everything about itself

Here’s a pattern that shows up again and again in discourse:

A: This thing that’s happening is bad.

B: Are you saying I’m a bad person for participating in this? How mean of you! I’m not a bad person, I’ve done X, Y, and Z!

It isn’t always this explicit; I’ll discuss more concrete instances in order to clarify. The important thing to realize is that A is pointing at a concrete problem (and likely one that is concretely affecting them), and B is changing the subject to be about B’s own self-consciousness. Self-consciousness wants to make everything about itself; when some topic is being discussed that has implications related to people’s self-images, the conversation frequently gets redirected to be about these self-images, rather than the concrete issue. Thus, problems don’t get discussed or solved; everything is redirected to being about maintaining people’s self-images.

Tone arguments

A tone argument criticizes an argument not for being incorrect, but for having the wrong tone. Common phrases used in tone arguments are: “More people would listen to you if…”, “you should try being more polite”, etc.

It’s clear why tone arguments are epistemically invalid. If someone says X, then X’s truth value is independent of their tone, so talking about their tone is changing the subject. (Now, if someone is saying X in a way that breaks epistemic discourse norms, then defending such norms is epistemically sensible; however, tone arguments aren’t about epistemic norms, they’re about people’s feelings).

Tone arguments are about people protecting their self-images when they or a group they are part of (or a person/group they sympathize with) is criticized. When a tone argument is made, the conversation is no longer about the original topic, it’s about how talking about the topic in certain ways makes people feel ashamed/guilty. Tone arguments are a key way self-consciousness makes everything about itself.

Tone arguments are practically always in bad faith. They aren’t made by people trying to help an idea be transmitted to and internalized by more others. They’re made by people who want their self-images to be protected. Protecting one’s self-image from the truth, by re-directing attention away from the epistemic object level, is acting in bad faith.

Self-consciousness in social justice

A documented phenomenon in social justice is “white women’s tears”. Here’s a case study (emphasis mine):

A group of student affairs professionals were in a meeting to discuss retention and wellness issues pertaining to a specific racial community on our campus. As the dialogue progressed, Anita, a woman of color, raised a concern about the lack of support and commitment to this community from Office X (including lack of measurable diversity training, representation of the community in question within the staff of Office X, etc.), which caused Susan from Office X, a White woman, to feel uncomfortable. Although Anita reassured Susan that her comments were not directed at her personally, Susan began to cry while responding that she “felt attacked”. Susan further added that: she donated her time and efforts to this community, and even served on a local non-profit organization board that worked with this community; she understood discrimination because her family had people of different backgrounds and her closest friends were members of this community; she was committed to diversity as she did diversity training within her office; and the office did not have enough funding for this community’s needs at that time.

Upon seeing this reaction, Anita was confused because although her tone of voice had been firm, she was not angry. From Anita’s perspective, the group had come together to address how the student community’s needs could be met, which partially meant pointing out current gaps where increased services were necessary. Anita was very clear that she was critiquing Susan’s office and not Susan, as Susan could not possibly be solely responsible for the decisions of her office.

The conversation of the group shifted at the point when Susan started to cry. From that moment, the group did not discuss the actual issue of the student community. Rather, they spent the duration of the meeting consoling Susan, reassuring her that she was not at fault. Susan calmed down, and publicly thanked Anita for her willingness to be direct, and complimented her passion. Later that day, Anita was reprimanded for her ‘angry tone,’ as she discovered that Susan complained about her “behavior” to both her own supervisor as well as Anita’s supervisor. Anita was left confused by the mixed messages she received with Susan’s compliment, and Susan’s subsequent complaint regarding her.

The key relevance of this case study is that, while the conversation was originally about the issue of student community needs, it became about Susan’s self-image. Susan made everything about her own self-image, ensuring that the actual concrete issue (that her office was not supporting the racial community) was not discussed or solved.

Shooting the messenger

In addition to crying, Susan also shot the messenger, by complaining about Anita to both her and Anita’s supervisors. This makes sense as ego-protective behavior: if she wants to maintain a certain self-image, she wants to discourage being presented with information that challenges it, and also wants to “one-up” the person who challenged her self-image, by harming that person’s image (so Anita does not end up looking better than Susan does).

Shooting the messenger is an ancient tactic, deployed especially by powerful people to silence providers of information that challenges their self-image. Shooting the messenger is asking to be lied to, using force. Obviously, if the powerful person actually wants information, this tactic is counterproductive, hence the standard advice to not shoot the messenger.

Self-consciousness as privilege defense

It’s notable that, in the cases discussed so far, self-consciousness is more often a behavior of the privileged and powerful, rather than the disprivileged and powerless. This, of course, isn’t a hard-and-fast rule, but there certainly seems to be a relation. Why is that?

Part of this is that the less-privileged often can’t get away with redirecting conversations by making everything about their self-image. People’s sympathies are more often with the privileged.

Another aspect is that privilege is largely about being rewarded for one’s identity, rather than one’s works. If you have no privilege, you have to actually do something concretely effective to be rewarded, like cleaning. Whereas, privileged people, almost by definition, get rewarded “for no reason” other than their identity.

Maintenance of a self-image makes less sense as an individual behavior than as a collective behavior. The phenomenon of bullshit jobs implies that much of the “economy” is performative, rather than about value-creation. While almost everyone can pretend to work, some people are better at it than others. The best people at such pretending are those who look the part, and who maintain the act. That is: privileged people who maintain their self-images, and who tie their self-images to their collective, as Susan did. (And, to the extent that e.g. school “prepares people for real workplaces”, it trains such behavior.)

Redirection away from the object level isn’t merely about defending self-image; it has the effect of causing issues not to be discussed, and problems not to be solved. Such effects maintain the local power system. And so, power systems encourage people to tie their self-images with the power system, resulting in self-consciousness acting as a defense of the power system.

Note that, while less-privileged people do often respond negatively to criticism from more-privileged people, such responses are more likely to be based in fear/anger rather than guilt/shame.

Stop trying to be a good person

At the root of this issue is the desire to maintain a narrative of being a “good person”. Susan responded to the criticism of her office by listing out reasons why she was a “good person” who was against racial discrimination.

While Anita wasn’t actually accusing Susan of racist behavior, it is, empirically, likely that some of Susan’s behavior is racist, as implicit racism is pervasive (and, indeed, Susan silenced a woman of color speaking on race). Susan’s implicit belief is that there is such a thing as “not being racist”, and that one gets there by passing some threshold of being nice to marginalized racial groups. But, since racism is a structural issue, it’s quite hard to actually stop participating in racism, without going and living in the woods somewhere. In societies with structural racism, ethical behavior requires skillfully and consciously reducing harm given the fact that one is a participant in racism, rather than washing one’s hands of the problem.

What if it isn’t actually possible to be “not racist” or otherwise “a good person”, at least on short timescales? What if almost every person’s behavior is morally depraved a lot of the time (according to their standards of what behavior makes someone a “good person”)? What if there are bad things that are your fault? What would be the right thing to do, then?

Calvinism has a theological doctrine of total depravity, according to which every person is utterly unable to stop committing evil, to obey God, or to accept salvation when it is offered. While I am not a Calvinist, I appreciate this teaching, because quite a lot of human behavior is simultaneously unethical and hard to stop, and because accepting this can get people to stop chasing the ideal of being a “good person”.

If you accept that you are irredeemably evil (with respect to your current idea of a good person), then there is no use in feeling self-conscious or in blocking information coming to you that implies your behavior is harmful. The only thing left to do is to steer in the right direction: make things around you better instead of worse, based on your intrinsically motivating discernment of what is better/worse. Don’t try to be a good person, just try to make nicer things happen. And get more foresight, perspective, and cooperation as you go, so you can participate in steering bigger things on longer timescales using more information.

Paradoxically, in accepting that one is irredeemably evil, one can start accepting information and steering in the right direction, thus developing merit, and becoming a better person, though still not “good” in the original sense. (This, I know from personal experience)

(See also: What’s your type: Identity and its Discontents; Blame games; Bad intent is a disposition, not a feeling)